期刊导航

论文摘要

基于多场景融合的分布式推荐模型

ADistribtedPersonlizedRecommendationModelBasedonMulti-sceneFusion

作者:张佳琳(哈尔滨商业大学 研究生院)

Author:ZhangJialin(Graduate School,HarbinUniv.ofCommerce)

收稿日期:2014-08-20          年卷(期)页码:2015,47(3):108-113

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:场景;分布式推荐;信息融合;特征生成;推荐算法

Key words:scene;distributedrecommendation;informationfusion;recommendationalgorithm

基金项目:黑龙江省教育厅科技项目资助(12531161);黑龙江省博士后资助经费项目(LBH-213126);黑龙江省自然科学基金面上项目资助(F201424)

中文摘要

个性化推荐系统中普遍存在着信息共享程度低、资源复用不足等问题。针对这些问题,提出基于多场景融合的分布式推荐模型,给出了该模型的组成单元和运行流程,以及对应的场景数据结构。该模型采用分布式的双向刻画的方法,通过多场景融合算法,进行客户特征(需求)与服务场景的互生成,并最终生成推荐列表。仿真实验证明,该模型较之独立节点的推荐模型,在消费娱乐领域,具有较高的客户覆盖度、推荐精度,且占用系统资源较少,具有较高的性价比。

英文摘要

In order to deal with the lack of information sharing and resource re-utilizations,a novel personalized recommendation model was presented based on multi-scene fusion,and its function units,working flows and the scene data structure were given.The model utilized a distributed bidirectional description method to process scene data,and multi-scene fusion algorithms were used to exchange recommendation information between client characters and service scenes.Simulation results showed that the model has better coverage rates,recommendation precisions and resource consumption rate than the absolute node algorithms.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065