期刊导航

论文摘要

进港航班排序优化数学模型研究

The Research on Optimization Mathematical Model of Arrival Flights Scheduling

作者:王世豪(四川大学空天科学与工程学院);杨红雨(四川大学空天科学与工程学院);武喜萍(四川大学 计算机学院);刘 洪(四川大学 计算机学院)

Author:Wang Shihao();Yang Hongyu(School of Aeronautics and Astronautics, Sichuan University);();()

收稿日期:2015-03-16          年卷(期)页码:2015,47(6):113-120

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:进港航班排序;最小延迟成本;数学模型;粒子群算法;线性微分递减

Key words:arrival flights scheduling; minimum delay cost; mathematical model; particle swarm optimization(PSO); linear differential decrease(LDD)

基金项目:国家空管科研课题(GKG201403004)

中文摘要

针对常用进港航班排序数学模型(总延迟时间最小和总延迟成本最小)中存在的问题,本文选取空中延误成本、旅客延误成本、后续延误成本以及环境污染成本四个指标综合建立一种改进的总延迟成本最小数学模型。在分析已有的基于模拟退火的粒子群算法(SA-PSO: particle swarm optimization based on simulated annealing)优化进港航班排序时寻优能力不足、收敛速度慢的基础上,采用一种线性微分递减(LDD: linear differential decrease)的退火策略,从而可以有效地解决进港航班排序问题。实验结果表明:与FCFS(first come first serve)、PSO以及SA-PSO算法相比,LDD-SA-PSO算法在进港航班优化问题上具有较好的寻优能力和收敛速度,同时改进数学模型中参数选择对优化结果也具有明显影响。

英文摘要

In view of exiting shortages of the commonly used mathematical model of arrival flights scheduling ( minimum delay time and minimum delay cost), the paper chose four indicators, including air delay cost, passenger delay cost, subsequent delay cost and environmental pollution cost to comprehensively establish an improved mathematical model of minimum delay cost. On the basis of analyzing insufficient ability of seeking optimization and slow convergence speed for the existing particle swarm optimization based on simulated annealing (SA-PSO) algorithm, an annealing strategy of linear differential decrease was applied to SA-PSO (LDD-SA-PSO) algorithm, thereby more effectively solving arrival flights scheduling. The experiment results demonstrated that compared with first come first serve (FCFS), particle swarm optimization (PSO) and SA-PSO, LDD-SA-PSO algorithm has better ability of seeking optimization and convergence speed on the arrival flights scheduling, and that the parameters of improved mathematical model also has obvious influence on the optimization results.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065