期刊导航

论文摘要

基于椭圆曲线DLP问题的无证书部分盲签名机制

Certificateless Partially Blind Signature Scheme Based on the Elliptic Curve Discrete Logarithm Problem

作者:邵国金(河南城建学院 计算机科学与工程系);薛冰(河南城建学院 计算机科学与工程系);陈明(重庆大学 计算机学院)

Author:Shao Guojin(Dept. of Computer Sci. and Eng.,Henan Univ. of Urban Construction);Xue Bing(Dept. of Computer Sci. and Eng.,Henan Univ. of Urban Construction);Chen Ming(College of Computer Sci.,Chongqing Univ.)

收稿日期:2011-08-10          年卷(期)页码:2012,44(1):112-117

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:部分盲签名;无证书;椭圆曲线密码学;离散对数难题

Key words:partially blind signature;certificateless;elliptic curve cryptography;discrete logarithm problem

基金项目:国家自然科学基金资助项目(90818028);河南省重点科技攻关项目(112102210362)

中文摘要

现有无证书部分盲签名方案采用计算量较大的双线性对运算,难以应用于计算能力有限的智能卡设备。结合椭圆曲线密码体制的优点,提出一种基于椭圆曲线离散对数难题(DLP)的无证书部分盲签名算法。新算法采用椭圆曲线上的点乘运算代替双线性对运算,大大降低了签名和签名验证过程中的计算开销。还定义了无证书部分盲签名机制的安全模型,并在该模型下证明了新签名算法满足正确性、部分盲性和不可伪造性。对比分析表明,新签名机制的计算开销远远低于其它几种同类型的方案,可用于构建基于智能卡技术的移动电子现金方案。

英文摘要

The existing certificateless partially blind signature schemes have high computing costs because of adopting bilinear pairing operation. Thus they are difficult to be used in smartcards with the limited computing power. Combined with the advantages of the elliptic curve cryptography, a certificateless partially blind signature scheme based on the elliptic curve discrete logarithm problem (DLP) was proposed. In this scheme, multiplication over an elliptic curve was used instead of bilinear pairing operation, greatly reducing computing cost in signature and signature verification process. A security model for certificateless partially blind signature schemes was also defined. Under this model, the correctness, partially blind and unforgeability of the new signature algorithm all were verified. The comparative analysis showed that the computing cost of the new scheme is far less than that of several other ones having the same type and it can be used to establish mobile e-cash schemes based on smartcards.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065