期刊导航

论文摘要

基于多重判别分析和分形维的数字调制样式自动识别

Automatic Digital Modulation Recognition Using MDA and Fractal Dimension

作者:唐智灵(西安电子科技大学 通信工程学院;桂林电子科技大学 电子工程与自动化学院);杨小牛(通信信息控制和安全技术国家重点实验室,);李建东(西安电子科技大学 通信工程学院)

Author:Tang Zhiling(School of Communication Eng., Xidian Univ.;School of Electronic Eng. and Automation,Guilin Univ. of Electronic Technol.);Yang Xiaoniu(Sci. and Technol. on Communication Info. Security Control Lab.);Li Jiandong(School of Communication Eng., Xidian Univ)

收稿日期:2011-05-23          年卷(期)页码:2012,44(2):117-121

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:小波;数字调制;分形维;目标识别

Key words:wavelet;digital modulation;fractal dimension;object recognition

基金项目:国家杰出青年科学基金资助项目(60725105);国家重点基础研究发展计划(“973”计划) 资助项目(2009CB320404);国防技术重点实验室资助项目

中文摘要

为了正确自动识别数字通信调制样式,提出一种基于信号形态特征的调制样式分类算法。算法首先用离散小波去噪的方法处理含噪采样信号,然后将采样信号重组成为2维数据阵列,并计算阵列的多重分形维作为调制样式特征量,最后通过多重判别分辨分析将特征矢量投影到Fisher超平面,用最大似然方法识别调制样式。仿真结果表明,在信噪比从-3 dB到20 dB的动态范围内,可以获得很高的正确识别率。

英文摘要

In order to realize automatic modulation recognition, an algorithm based on geometric shape was put forward. At first, signal samples were processed with discrete wavelet denoise method. After that, signal samples were rearranged from 1-D to 2-D and multi-fractal dimension vectors were obtained. At last, feature vectors projected on the Fisher hyper plane were classified with maximum likelihood method. The simulation result showed that high rate of recognition is achieved at signal-noise rate from -3 dB to 20 dB.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065