期刊导航

论文摘要

基于双层HHMM的产品评论特征和情感分类

Features and Opinions Classification of Chinese Product Reviews Based on Two-level HHMMs

作者:张磊(四川大学 计算机学院);李梦诗(四川大学 计算机学院);陈黎(四川大学 计算机学院);黎红友(四川大学 计算机学院);李志蜀(四川大学 计算机学院);彭舰(四川大学 计算机学院)

Author:Zhang Lei(College of Computer Sci.,Sichua Univ.);Li Mengshi(College of Computer Sci.,Sichua Univ.);Chen Li(College of Computer Sci.,Sichua Univ.);Li Hongyou(College of Computer Sci.,Sichua Univ.);Li Zhishu(College of Computer Sci.,Sichua Univ.);Peng Jian(College of Computer Sci.,Sichua Univ.)

收稿日期:2012-10-30          年卷(期)页码:2013,45(2):94-102

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:Web数据挖掘;特征情感分类;标注规则;双层HHMM

Key words:Web data mining;feature and sentiment classification;tagging specification;two-level HHMM

基金项目:四川省科技支撑计划资助项目(030405301054);四川大学青年教师科研启动基金资助项目(2011SCU11012)

中文摘要

近年来,中文产品评论的特征情感分类是Web数据挖掘的重要研究内容之一。提出了一套完整的产品命名实体、特征词、情感词以及边界的标注规则,设计了多层次的混合标签模式;提出了双层HHMM(层级隐马尔科夫模型)结构,将词形标注和词性标注的特点进行融合;提出了基于词形标注的HHMM-1算法和基于词性标注的HHMM-2算法,实现复杂短语的自动标注。实验证明,双层HHMM模型起到了互补的作用,模型的查全率和F-score值均有较大提高。

英文摘要

In recent years, feature and opinion classification of Chinese product review is one of the most important research fields in Web data mining. A well-defined specification on data annotation for product named entities, features, opinions and boundaries was proposed and a hybrid tag representation was designed.By integrating linguistic features and POS features into automatic learning, a novel two-level Hierarchical HMMs (HHMMs ) framework was put forward. The HHMM-1 and HHMM-2 algorithms were advanced to identify features and opinion entities automatically. The experimental results showed that two-level HHMM works in a mutual complementation way, which makes the recall and F-score of our approach obviously outstanding.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065