期刊导航

论文摘要

基于进化算法的带约束混合动力系统多目标优化

Constrained Parallel Hybrid System Multi-objective Optimization Based on Evolutionary Algorithm

作者:杨观赐(贵州大学 现代制造技术教育部重点实验室(贵州大学);中国科学院 成都计算机应用研究所);李少波(贵州大学 现代制造技术教育部重点实验室(贵州大学),贵州 贵阳 550003;2.中国科学院 成都计算机应用研究所);璩晶磊(贵州大学 现代制造技术教育部重点实验室(贵州大学));钟勇(中国科学院 成都计算机应用研究所);于新宝(贵州大学 现代制造技术教育部重点实验室(贵州大学))

Author:Yang Guanci(Key Lab. of Advanced Manufacturing Technol.(Guizhou Univ.),Ministry of Education,Guizhou Univ.;Chengdu Inst. of Computer Applications,Chinese Academy of Sciences);Li Shaobo(Key Lab. of Advanced Manufacturing Technol.(Guizhou Univ.),Ministry of Education,Guizhou Univ.;Chengdu Inst. of Computer Applications,Chinese Academy of Sciences);Qu Jinglei(Key Lab. of Advanced Manufacturing Technol.(Guizhou Univ.),Ministry of Education,Guizhou Univ.);Zhou Yong(Chengdu Inst. of Computer);Yu Xinbo(Key Lab. of Advanced Manufacturing Technol.(Guizhou Univ.),Ministry of Education,Guizhou Univ.)

收稿日期:2011-10-04          年卷(期)页码:2012,44(3):141-146

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:多目标优化;混合动力系统;混合动力汽车;进化算法

Key words:multi-objective optimization; hybrid system; hybrid electric vehicle; evolutionary algorithm

基金项目:教育部新世纪优秀人才支持计划资助项目(NCET 09 0094);国家“863”计划资助项目(2009AA043203);“十二五”国家科技支撑计划资助项目(2012BAF12B14);贵州省科学技术基金资助项目(黔科合J字\[2011\]2196号)

中文摘要

为获得无需将多目标优化问题转化为单目标优化问题的混合动力系统多目标优化方法,分析了并联混合汽车总成模型,建立了带约束混合动力系统多目标优化数学模型,并给出了优化目标、待优化参数及约束条件。设计了基于NSGA Ⅱ的混合动力系统多目标优化算法,该算法基于Pareto支配性原理判定所得方案的优劣,不需要指定各个目标的权系数。仿真优化结果表明:优化后的系统百公里油耗平均下降了0.25%,污染物排放平均下降了2.75%,蓄电池充电效率分布由[0.8, 0.9]变为[0.85, 0.9],放电效率分布由[0.82, 1.0]变为[0.95, 1.0],作者提出的方法可以优化混合动力系统的性能。

英文摘要

In order to obtain a method to avoid transforming multi-objective functions into a single objective evaluation function for hybrid system multi-objective optimization problem, the parallel hybrid electric vehicle model was analyzed, the multi-objective optimization mathematical model of constrained hybrid system was established, and the optimization objectives, parameters and constraints were given. A multi-objective evolutionary algorithm for constrained parallel hybrid system optimization based on NSGA-Ⅱ(cPHS-NSGA) was proposed, which adopted the Pareto dominated principle to determine solutions without specifying weight coefficient for each objective. The simulation optimization results showed that compared with the old system, the fuel consumption per 100 km dropped by an average of 0.25% and the emissions fell by an average of 2.75%. Battery charging efficiency distribution changed from [0.8, 0.9] to [0.85, 0.9] and the range of discharge efficiency changed from [0.82,1.0] to [0.95,1.0]. The cPHS-NSGA was capable to improve the performance of parallel hybrid system.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065