期刊导航

论文摘要

分布式数据库全局最大频繁项集增量更新算法

Incremental Updating Algorithm of Global Maximum Frequent Itemsets in Distributed Database

作者:何波(重庆理工大学 计算机科学与工程学院);闫河(重庆理工大学 计算机科学与工程学院)

Author:He Bo(School of Computer Sci. and Eng.,Chongqing Univ. of Technol.);Yan He(School of Computer Sci. and Eng.,Chongqing Univ. of Technol.)

收稿日期:2011-12-05          年卷(期)页码:2012,44(3):112-117

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:数据挖掘;频繁模式树;全局最大频繁项集;增量更新算法

Key words:data mining;FP-tree;global maximum frequent itemset;increasing updating algorithm

基金项目:国家自然科学基金资助项目(61173184);深圳市生物、互联网、新能源产业发展专项资金资助项目(CXB201005250021A);深圳市高性能数据挖掘重点实验室资助项目(2012kF03)

中文摘要

随着分布式数据库记录的不断增加,需要对已挖掘出的全局最大频繁项集进行增量更新。在已经提出的快速挖掘全局最大频繁项集算法(FMMFI)的基础上,提出了分布式数据库全局最大频繁项集增量更新算法(IUGMFI)。IUGMFI算法利用了FMMFI算法已经挖掘出的分布式数据库全局频繁项目和全局最大频繁项集。挖掘增量数据库的全局频繁项目,构建增量数据库的FP tree,挖掘出增量数据库的全局最大频繁项集,采用自上而下的剪枝策略更新全局最大频繁项集。理论分析和实验结果表明,IUGMFI算法是快速而有效的。

英文摘要

On the basis of the fast mining algorithm for global maximum frequent itemsets,an incremental updating algorithm, named as IUGMFI algorithm, was proposed. The algorithm made use of the global frequent items and global maximum frequent itemsets in distributed database. Firstly, the global frequent items were mined in incremental distributed database. Secondly, the FP-tree was constructed in incremental distributed database. Thirdly, the global maximum frequent itemsets were mined in incremental distributed database. Finally, the global maximum frequent itemsets were updated by the strategy of top-down. Theoretical analysis and experimental results showed that IUGMFI algorithm is fast and effective.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065