期刊导航

论文摘要

社交网络形成和演化的特征模型研究

Research on the Feature Model of the Formation and Evolution of Social Networks

作者:熊熙(四川大学 信息安全研究所);曹伟(中国信息安全测评中心);周欣(中国信息安全测评中心);胡勇(四川大学 信息安全研究所)

Author:Xiong Xi(Inst. of Info. Security,Sichuan Univ.);Cao Wei(China Info. Technol. Security Evaluation Center);Zhou Xin(China Info. Technol. Security Evaluation Center);Hu Yong(Inst. of Info. Security,Sichuan Univ.)

收稿日期:2011-10-19          年卷(期)页码:2012,44(4):140-144

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:复杂网络;社交网络;群落;幂律分布

Key words:complex networks;social networking services;cluster;power-law distribution

基金项目:国家自然科学基金资助项目(60873246);中国信息安全测评中心资助项目

中文摘要

社交网络和微博的网络特征除具有传统无标度网络的典型特征外,还存在其他不容忽视的特征,现有模型均不能对此进行准确描述。在比较分析网络数据的基础上,提出一种混合模型对类社交网络的形成和演化特征进行描述,并建立了基于该模型的平均场方程,方程的解显示出该模型的度分布服从偏移和拉伸后的幂律。仿真结果表明,作者提出的模型模型能描述出社交网络的综合特征。对包括本文模型在内的几种模型进行了比较,并对各种模型间出现特征差别的原因进行了分析。

英文摘要

Besides the typical characteristics of scale-free network, the indispensable features of social networking services and microblog can not be described by existing models completely and accurately. Based on comparison and analysis of network data, a hybrid model was put forward to describe the features of formation and evolution of generalized social network. Average-field equations were constructed, and its solution showed that the degree distribution follows the translated and stretched power-law. The simulation results showed that the model can describe the overall characteristics of social network. Finally, several models, including this model, were compared, and reasons were given for the differences of features among the models.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065