期刊导航

论文摘要

基于相关权值的图像椒盐噪声自适应窗滤波

Self-adaptive Filtering of Salt-pepper Noise in Images with Correlation Weights

作者:李天翼(四川大学 计算机学院;四川大学 制造学院);王明辉(四川大学 计算机学院);黄祖建(成都航空职业技术学院 航空电子工程系);朱斌(重庆长江师范学院 物理学与电子工程学)

Author:Li Tianyi(School of Computer Sci., Sichuan Univ.;School of Manufacturing Sci. and Eng.,Sichuan Univ.);Wang Minghui(School of Computer Sci., Sichuan Univ.);Huang Zujian(Aeronautic Electronic Eng. Dept.,Chengdu Aeronautic and Vocational and Technical College);Zhu Bin(School of Physics and Electron Eng.,Yangtze Normal Univ.)

收稿日期:2012-01-04          年卷(期)页码:2012,44(4):103-109

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:相关权值;灰度差;加权均值滤波;椒盐噪声

Key words:correlation weights;grayscale difference value;weighted mean filtering;salt-pepper noise

基金项目:国家自然科学基金资助项目(61071162)

中文摘要

为有效滤除图像中椒盐噪声,提出一种基于相关权值的自适应窗滤波算法。算法基于极值检测判断噪声点并仅对噪声点滤波。引入灰度差刻画邻域像素与中心像素的相关性,以此为基础设置像素权值,对中心像素执行加权均值滤波。通过邻域窗口的自适应扩展适应噪声密度变化,并对邻域像素分区域设置权值,从而适应高椒盐噪声的滤除。仿真结果表明,本文算法能够有效滤除图像中的椒盐噪声,尤其在高椒盐噪声下性能表现更佳。

英文摘要

A self-adaptive weighted mean algorithm is proposed for filtering the salt-pepper noise in images. The algorithm detects the noise pixel with minimum-maximum inspection, and then replaces the noise pixel with weighted mean value, where the weight of each pixel in neighborhood is set based on its correlation with the center pixel. The algorithm adapts itself to different noise densities by rectifying the filtering window according to the number of non-extremum pixels in neighborhood. Simulation results showed that, compared with other methods, the proposed algorithm achieves more satisfactory images while it gives better Signal-to-Noise Ratio(SNR) and Mean Squared Error(MSE), and exhibits more excellent in scenarios where the image is highly corrupted.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065