期刊导航

论文摘要

基于不确定数据的功能模块预测

Research of Detecting Functional Modules Based on Uncertainty Data

作者:倪问尹(中南大学 信息科学与工程学院;长沙学院 信息与计算科学系);王建新(中南大学 信息科学与工程学院);熊慧军(长沙学院 信息与计算科学系);赵碧海(中南大学 信息科学与工程学院;长沙学院 信息与计算科学系);胡赛(长沙学院 信息与计算科学系)

Author:Ni Wenyin(School of Info. Sci. and Eng.,Central South Univ.;Dept. of Info. and Computing Sci.,Changsha Univ.);Wang Jianxin(School of Info. Sci. and Eng.,Central South Univ.);Xiong Huijun(Dept. of Info. and Computing Sci.,Changsha Univ.);Zhao Bihai(School of Info. Sci. and Eng.,Central South Univ.;Dept. of Info. and Computing Sci.,Changsha Univ.);Hu Sai(Dept. of Info. and Computing Sci.,Changsha Univ.)

收稿日期:2013-04-03          年卷(期)页码:2013,45(5):80-87

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:不确定数据;功能模块;蛋白质相互作用网络;基因功能注释

Key words:uncertain data;functional module;protein-protein interaction network;gene ontology annotation

基金项目:湖南省教育厅资助项目(11C0125);湖南省“十二五”规划资助项目(XJK011CXJ002);长沙市科技项目(K1205049-11;K1205048-11)

中文摘要

蛋白质功能模块在分子交互过程中扮演着重要角色。已有多种方法从蛋白质相互作用网络中识别功能模块,但许多算法没有考虑模块的内在生物组织特性,忽略了较高的假阳性给算法产生的负面影响。为PPI网络构建一个不确定图的模型,其中每一个蛋白质的交互作用都被赋予一个测度;结合不确定数据管理技术,提出一种基于可能世界模型的功能模块识别算法。若子图内部节点间具有较高的内聚性,子图与邻居子图间具有较小的耦合性,该子图被标识为功能模块。引入期望支持度的概念描述节点和子图间的关系。为了评估算法的性能,对目前已有的7种算法与本文算法做了综合比较。实验结果表明,该算法性能显著优于已有的方法,算法识别的功能模块具有更好的生物统计意义。

英文摘要

Functional modules play an important role in many molecular processes and functions. Many computational methods have been presented to detect protein functional modules from a protein-protein interaction network. However most of the available methods have failed to take into account the intrinsic biological organization and ignore the negative impact on the algorithms by high false positives. In order to resolve this problem, the protein-protein interaction (PPI) network was modeled as an uncertain graph which every protein-protein interaction endowed with a measure. Through the use of the uncertain data management technology, a novel approach based on the possible-world model was developed to detect functional modules. A subgraph was represented as a functional module with high cohesion between its subunits and low coupling between the subgraph and its neighbor subgraphs. The relationship between a node and a subgraph was described by introducing the concept of expected support degree. A comprehensive comparison among the existing seven algorithms and our algorithm was made. Experimental results indicated that this method performs significantly better the state-of-the-art methods and the discovered functional modules are statistically significant.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065