期刊导航

论文摘要

3维大脑核磁共振图像隐私信息剔除方法

Facial De-identification in Three-dimensional Magnetic Resonance Images of Human Brain

作者:干可(四川大学 电子信息学院 图像信息研究所);余艳梅(四川大学 电子信息学院 图像信息研究所);罗代升(四川大学 电子信息学院 图像信息研究所);梁子飞(四川大学 电子信息学院 图像信息研究所);曾鹏(四川大学 电子信息学院 图像信息研究所)

Author:Gan Ke(Inst. of Image Info.,College of Electronics and Info. Eng., Sichuan Univ.);Yu Yanmei(Inst. of Image Info.,College of Electronics and Info. Eng., Sichuan Univ.);Luo Daisheng(Inst. of Image Info.,College of Electronics and Info. Eng., Sichuan Univ.);Liang Zifei(Inst. of Image Info.,College of Electronics and Info. Eng., Sichuan Univ.);Zeng Peng(Inst. of Image Info.,College of Electronics and Info. Eng., Sichuan Univ.)

收稿日期:2013-03-22          年卷(期)页码:2013,45(5):51-56

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:核磁共振;大脑;点标记;数据驱动;面部特征;3维重建

Key words:magnetic resonance imaging;brain;point landmark;data-driven;facial feature;three-dimensional reconstruction

基金项目:美国国家卫生院阿兹海默神经影像倡议(ADNI,NIH Grant U01 AG024904);国家自然科学基金资助项目(81173356)

中文摘要

在神经影像研究中,患者的面部特征有时可以通过3维表面重建技术从影像中复原,这使得患者身份隐私信息泄漏存在潜在可能。为了解决这一问题,提出一种自动化面部特征剔除算法,从海量多模态大脑核磁共振影像中自动剔除患者身份相关的面部特征信息。该方法基于一种新提出的多分辨分层特征向量匹配方法来准确定位3维影像中的解剖学点标记,并通这种匹配方法从多模态磁共振影像中确定患者面部特征相关的解剖结构的空间位置,并以此为基础估计出一个最优3维剔除平面来剔除患者面部特征信息。最后,通过实验验证了该方法的有用性和可靠性。

英文摘要

In neuroimaging studies,subject’s identity can sometimes be recovered from volumetric brain MR images via three-dimensional surface reconstruction or volume rendering techniques and directly leads to the violation of privacy protection regulations in medical applications.To address these concerns,a novel method for facial de-identification was developed to automatically remove facial feature from multi-modality brain MR images.A multi-resolution hierarchical feature vector based matching framework was proposed and applied to accurately locate several facial feature-related key points in the 3D brain MR images.An optimal 3D plane which cut through these detected key points was estimated and used to remove facial voxels from MR images.Experiments were conducted to validate the usefulness and applicability of the proposed method.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065