期刊导航

论文摘要

基于酶数值P系统的大数据场分析方法

Handling Big Data Field with Enzymatic Numerical P System

作者:李文平(哈尔滨工程大学 计算机科学与技术学院);杨静(哈尔滨工程大学 计算机科学与技术学院);张健沛(哈尔滨工程大学 计算机科学与技术学院)

Author:Li Wenping(College of Computer Sci. and Technol.,Harbin Eng. Univ.);Yang Jing(College of Computer Sci. and Technol.,Harbin Eng. Univ.);Yang Jianpei(College of Computer Sci. and Technol.,Harbin Eng. Univ.)

收稿日期:2013-05-07          年卷(期)页码:2013,45(6):96-104

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:数据场;大数据;膜计算;酶数值P系统

Key words:data field;big data;membrane computing;enzymatic numerical P system

基金项目:国家自然科学基金资助项目(61370083;61073043;61073041);高等学校博士学科点专项科研基金项目(20112304110011;20122304110012);黑龙江省自然科学基金项目(F200901);哈尔滨市科技创新人才研究专项资金项目(2011RFXXG015)

中文摘要

为了解决大数据环境下快速求解数据场势值的计算效率问题,基于膜计算领域的酶数值P系统(ENPS),提出一种数据场分析方法。该方法先引入转移P系统对ENPS加以改进,以提高后者的流程可控性,再基于改进的系统给出计算大数据场势值的ENPS的具体实现。P系统的极大并行性导致大数据场势值求解在3步内完成,每个步骤的计算时间为常数,且与数据规模无关。在真实人脸图像数据场上的实验结果验证了此方法的高效性。

英文摘要

An approach to analyze data field was proposed to compute the data field potential in the setting of big data based on the enzymatic numerical P system(ENPS) which is a novel membrane computing device. At first, this approach employed the transition P system to improve the ENPS so as to enhance the controllability of processes. Then, the improved ENPS was taken into account to design a P system for calculating the potential of big data field. The maximum parallelism of the P system resulted in the accomplishment of calculation on the potential of big data field only in three steps. The running time within each step was constant and independent to the data scale. Experimental results on real data field from face images verified the effectiveness of the proposed method.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065