期刊导航

论文摘要

基于ELF静态结构特征的恶意软件检测方法

Malware Detection Approach Based on Structural Feature of ELF File

作者:白金荣(四川大学 计算机学院;玉溪师范学院);王俊峰(四川大学 计算机学院);赵宗渠(四川大学 计算机学院)

Author:Bai Jinrong(School of Computer Sci.,Sichuan Univ.;Yuxi Normal Univ.);Wang Junfeng(School of Computer Sci.,Sichuan Univ.);Zhao Zongqu(School of Computer Sci.,Sichuan Univ.)

收稿日期:2012-03-07          年卷(期)页码:2012,44(5):109-114

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:恶意软件检测;结构特征;机器学习;ELF

Key words:malware detection;structural feature;machine learning;ELF

基金项目:国家“863”计划资助项目(2008AA01Z208);四川省青年基金资助项目(09ZQ026-028)

中文摘要

Linux平台的恶意软件检测方法目前研究较少,主要的分析手段和检测技术依然有很大的局限性。提出了一种基于ELF文件静态结构特征的恶意软件检测方法。通过对Linux平台ELF文件静态结构属性深入分析,提取在恶意软件和正常软件间具有很好区分度的属性,通过特征选择方法约减提取的特征,然后使用数据挖掘分类算法进行学习,使得能正确识别恶意软件和正常文件。实验结果显示,所使用分类算法能够以99.7%的准确率检测已知和未知的恶意软件,且检测时间较短,占用系统资源较少,可实际部署于反病毒软件中使用。

英文摘要

Because malware detection method has been rarely studied in the Linux platform at present, the main analysis and detection methods still have a lot of limitations. A new malware detection method was proposed based on the structural feature of the ELF file. Based on in-depth analysis of the static structural information of the ELF file,the features which could distinguish between malware and the benign were extracted from the structural information of ELF file and feature selection method was applied to reduce the dimensionality of the features. The results of experiments indicated that, when the selected features are trained using classification algorithms,the proposed method has a accuracy of 99.7%,and could identify the known and unknown malware. The new detection approach has high detection accuracy with low processing overheads and less detection time and could be deployed in real-time anti-virus software.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065