期刊导航

论文摘要

支持向量机和元胞自动机相结合的图像边缘检测方法

Image Edge Detection Based on Support Vector Machine and Cellular Automata

作者:赵雪峰(四川大学制造科学与工程学院);殷国富(四川大学制造科学与工程学院);尹湘云(四川大学制造科学与工程学院);仲晓敏(淮海工学院计算机工程学院)

Author:Zhao Xue-Feng(School of Manufacturing Science & Engineering, Sichuan University);Yin Guo-fu(School of Manufacturing Science & Engineering, Sichuan University);();()

收稿日期:2009-09-28          年卷(期)页码:2011,43(1):137-142

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:最小二乘支持向量机;元胞自动机;边缘检测;拟合;演化规则

Key words:least squares support vector machine; cellular automata; edge detection; fitting; evolution rules

基金项目:国家863计划项目(编号:2006AA04Z108),成都市科技公关计划项目(编号:08GGZD089GX-007)

中文摘要

针对如何提高图像边缘检测效率的问题,提出一种结合最小二乘支持向量机(LSSVM)和元胞自动机进行图像边缘检测的方法。首先,基于Gauss径向基核和多项式核构建出新的核函数,使得LSSVM对图像像素邻域的灰度值能够进行准确的曲面拟合。接着推导出图像的梯度算子,并与图像灰度值进行卷积得到图像的梯度值。然后,元胞自动机按照所设计的局部规则对梯度值进行演化,实现图像边缘的定位和检测。仿真实验检测出的图像边缘定位准确,而且达到一个像素宽,表明新提出的边缘检测算法是有效的;同时,通过对比分析得知新算法具有比Sobel和Canny算法更高的检测性能。

英文摘要

Aiming at how to establish the ideal standard for the edge detection, a new image edge detection method was proposed based on a combination of least squares support vector machine (LSSVM) and cellular automata. Polynomial and Gaussian kernel function was deployed to construct a new kind of kernel function. LSSVM selected the new kernel function and fitted the image intensity surface for the neighborhood of every pixel. The gradient operators which were deduced from the above LSSVM convoluted with the image gray values to get the image gradient values. Gradient values were evolved out by cellular automata with the designed local rules in order to achieve the best edge detection performance. Simulation results showed that edges were a pixel width and edge positioning was accurate. As illustrated that the proposed algorithm was feasible. Furthermore, the proposed algorithm was higher than the Sobel and the Canny algorithm in detection performance.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065