期刊导航

论文摘要

基于先验动态形状约束的视频目标提取

Dynamic Shape Prior Based Object Segmentation in Video Stream

作者:唐鹏(四川大学,视觉合成图形图象技术国防重点学科实验室);高琳(四川大学,视觉合成图形图象技术国防重点学科实验室);周欣(四川大学,视觉合成图形图象技术国防重点学科实验室);盛鹏(四川大学,视觉合成图形图象技术国防重点学科实验室)

Author:Tang Peng(Key Laboratory of Fundamental Synthetic Vision Graphics and Image Science for National Defense, Sichuan University);GAO Lin(Key Laboratory of Fundamental Synthetic Vision Graphics and Image Science for National Defense, Sichuan University);ZHOU Xin(Key Laboratory of Fundamental Synthetic Vision Graphics and Image Science for National Defense, Sichuan University);SHENG Peng(Key Laboratory of Fundamental Synthetic Vision Graphics and Image Science for National Defense, Sichuan University)

收稿日期:2008-03-03          年卷(期)页码:2009,41(2):185-191

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:视频监视,目标分割,动态形状模型,Graph Cut

Key words:Video surveillance, object segmentation, dynamic shape model, Graph cut

基金项目:国家自然科学基金

中文摘要

准确的目标提取是视频监视和视觉合成系统中的基础和关键步骤。然而背景和目标的复杂性通常导致目标难以从背景区分。针对此问题,本文提出了一种针对单摄像机的视频图像的目标提取新算法。首先在马尔可夫随机场的框架下将先验形状约束定义为从分割结果到先验形状之间轮廓变换的距离,并结合目标的检测似然度的信息统一为势函数,再用Graph Cut获取分割的全局最优解;为了反映形变的时空相关性,进而提出基于先验知识的动态形状的概念,用主成分分析将形状映射到低维度的潜变量子空间,并对潜变量变化趋势的建立自回归模型,通过模型预测指导分割过程;同时模型参数和系统状态利用分割结果在线更新。试验表明,该算法能够适应目标的外形变化,并能在目标被部分遮挡或难以从背景区分的情况下准确提取,鲁棒性较好,能够为机器视觉应用提供中级视觉的信息。

英文摘要

Accurate object subtraction is a fundamental step of video surveillance and synthesis vision applications. However, segmentation with intensity information alone is prone to fail for objects with diffuse edges, in clutter, or under occlusion. In this work, a novel segmentation method is presented for object with deformation in monocular videos. First, we formulate shape prior term as a distance of deformation by explicitly estimating integral motion of the whole contour, which can then be incorporated with spatial-temporal image information under Markov random field energies framework to be minimized by the Graph Cut algorithm. Then we proposed the concept of dynamic shape to characterize the highly variable nonlinear shape priors. The deformation is represented in an orthogonal basis learned by principal component analysis from training sets and the latent variables are expressed as autoregressive model. Simultaneously, both the orthogonal basis decomposition and the autoregressive model parameters are updated on-line to capture model evolutions. Finally, Promising experimental results demonstrate the potentials of the proposed segmentation framework with respect to noise, clutter, and partial occlusions.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065