期刊导航

论文摘要

基于小生境基因表达式编程的多模函数优化

Multimodal Function Optimization Based on Niche Gene Expression Programming

作者:李太勇(四川大学计算机学院);唐常杰(四川大学计算机学院);吴江(四川大学计算机学院)

Author:Li Tai-Yong(School of Computer Science, Sichuan University);Tang Chang-Jie(School of Computer Science, Sichuan University);Wu Jiang(School of Computer Science, Sichuan University)

收稿日期:2008-02-27          年卷(期)页码:2009,41(2):162-166

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:基因表达式编程;小生境;多模函数优化;多目标优化

Key words:Gene Expression Programming (GEP); Niche; Multimodal Function Optimization; Multiobjective Optimization

基金项目:国家自然科学基金

中文摘要

为了解决传统基因表达式编程(GEP)无法发现多模函数的所有最优解的问题,将小生境概念引入到基因表达式编程中。分析了传统GEP算法在多模函数优化方面的不足,提出了小生境半径的自适应调整策略AMNR,提出了基于小生境基因表达式编程的多模函数优化算法NGEP-MFO。扩展了传统GEP的应用领域,实验表明,相对于传统GEP,NGEP-MFO能大幅提高发现所有最优解的成功率和判定最优解的准确度。

英文摘要

Traditional Gene Expression Programming (GEP) can not discover all optimum solutions for specific multimodal function. To solve this problem, the niche technology was applied to GEP. The limitation of the existing optimization for multimodal function based on GEP was analyzed. A modification strategy with niche radius named AMNR (Adaptive Modification with Niche Radius) and an algorithm named NGEP-MFO (Multimodal Function Optimization based on Niche GEP) were proposed. The application domain of traditional GEP was extended. Experiments showed that compared with traditional GEP, NGEP-MFO can improve the successful ration and accuracy greatly when identifying all optimum solutions.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065