期刊导航

论文摘要

基于基因表达式编程的地面等待策略模型研究

A GHP Model Research Based on Gene Expression Programming

作者:王冬磊(1.四川大学 计算机学院,四川 成都 610064;2.中国工程物理研究院 化工材料研究所,四川 绵阳 621900);彭莉娟(西南科技大学 计算机科学与技术学院);唐常杰(四川大学 计算机学院);段磊()

Author:Wang Donglei(1.School of Computer Sci., Sichuan Univ.,Chengdu 610064, China;2.Inst. of Chemical Materials, China Academy of Eng. Physics, Mianyang 621900,China);Peng Lijuan(Southwest Univ. of Sci. and Technol.,Computer Sci. and Technol. Inst.);Tang Changjie(School of Computer Sci., Sichuan Univ.);Duan Lei()

收稿日期:2010-04-16          年卷(期)页码:2011,43(2):80-86

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:地面等待;基因表达式编程;多基因家族;双胞基因

Key words:Ground-Holding;Gene Expression Programming;multi-gene family;double homology-gene

基金项目:国家自然科学基金资助项目(60705005);国家“863”计划资助项目(2006AA12A104)

中文摘要

针对地面等待策略,给出了问题的具体描述,建立了基于基因表达式编程的地面等待策略模型。该模型考虑了不同机型航班延误费用不同的重要经济因素,采用多基因家族对航班和时隙进行编码。同时,针对有后继任务的航班提出双胞基因。结合实际空中交通管理约束,对普通基因和双胞基因分别设计了适应度函数。实验仿真中,将本文算法与RBS算法、二次自然增长延误算法比较,在所有航班总延误费用较少的情况下,本文算法分配结果中有后继任务航班的总延误时间和总延误费用较RBS算法减少26%和32%,较二次自然增长算法减少了27%和31%,表明了模型和算法的有效性。

英文摘要

A Ground-Holding Program(GHP) model based on Gene Expression Programming and the description of the problem were proposed. This model considered different delay costs of different aircrafts as important economical factor. The chromosome was coded by multi-gene family including both arrival aircraft information and airport slots. Meanwhile, according to consecutive flights, a special double-homology-gene was proposed, and two fitness functions were designed respectively for common gene and double-homology-gene combined with actual air traffic control restrictions. The comparison of this algorithm with RBS(Ration By Schedule) algorithm and Accrute-Delay-Based Slot Allocation(ADBSA) algorithm showed that in the condition of less total delay cost for all aircrafts, the total delay time and total delay cost of the consecutive flights reduced by 26% and 32% compared with RBS, and 27% and 31% compared with ADBSA, which validated the feasibility of the proposed model and algorithm.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065