期刊导航

论文摘要

基于危险理论的自适应免疫算法

Adaptive Immune Algorithm Based on Danger Theory

作者:许斌(南京航空航天大学 计算机科学与技术学院);庄毅(南京航空航天大学 计算机科学与技术学院)

Author:Xu Bin(School of Computer Sci. and Technol., Nanjing Univ. of Aeronautics and Astronautics);Zhuang Yi(School of Computer Sci. and Technol., Nanjing Univ. of Aeronautics and Astronautics)

收稿日期:2010-04-13          年卷(期)页码:2011,43(3):123-132

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:危险理论;免疫网络;人工免疫系统;进化算法

Key words:danger theory;immune network;artificial immune systems;evolutionary algorithms

基金项目:国家航空科学基金资助项目(05F2037);国防基金资助项目(Q072006C002-1)

中文摘要

针对克隆选择算法自适应能力和多值搜索能力较弱的不足,提出了一种基于危险理论的自适应免疫算法。算法中引入种群环境和抗体危险信号引导自适应免疫应答过程,增强了种群多样性,避免了算法过早收敛。利用Markov链证明了算法的收敛性,分析了算法的复杂度。针对经典benchmark函数的仿真实验结果表明,相比克隆选择算法,本算法具有良好的全局收敛能力和多值搜索能力,且具备较快的收敛速度和求解精度。

英文摘要

Since clonal selection algorithm lacks of adaptive capacity when solving multimodal problems, a novel adaptive immune algorithm,which was based on immune danger theory, immune network and clonal selection theory, was proposed to emulate the entire immune mechanisms and to enhance the performance for complex multimodal problems. The environment of antibody population and the corresponding danger signal of each antibody were incorporated into the process of immune response, which preserved the diversity of antibody population and then alleviated the premature of the algorithm to some extent. The algorithm was proved theoretically to be convergent with Markov chain model. Simulation results on the classical benchmark functions showed that, compared to clonal selection algorithm, this algorithm has good performance of global convergence and multimodal searching ability, and has a fast convergence speed with good quality of solution.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065