期刊导航

论文摘要

基于多尺度马尔科夫随机场融合的遥感图像变化检测

Remote Sensing Image Variation Detection on Multi-scale MRF Fusion

作者:陈忠辉(福州大学 物理与信息工程学院);王卫星(福州大学 物理与信息工程学院);于天超(中国飞行试验研究院);林丽群(福州大学 物理与信息工程学院)

Author:Chen Zhonghui(College of Physics and Info. Eng.,Fuzhou Univ.);Wang Weixing(College of Physics and Info. Eng.,Fuzhou Univ.);Yu Tianchao(China Flight Test Establishment);Lin Liqun(College of Physics and Info. Eng.,Fuzhou Univ.)

收稿日期:2010-06-09          年卷(期)页码:2011,43(3):104-108

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:变化检测;多尺度;马氏距离;马尔科夫随机场;图像融合

Key words:change detection;multi-scale;Mahalanobis distance;Markov random field;image fusion

基金项目:国家自然科学基金资助项目(60873186);教育部科学技术研究重点项目(210184);重庆市教委科学技术研究资助项目(KJ100525)

中文摘要

在区域变化检测中,为了克服配准误差或噪声引起的伪变化,从多尺度融合的角度出发,对多尺度分析应用于遥感图像变化检测进行了探讨。首先利用小波变换对原始图像进行多尺度分解,然后利用马氏距离判决函数对不同尺度图像进行变化检测,最后利用马尔科夫随机场将不同尺度变化检测结果进行融合。由于马尔科夫随机场融合方法充分考虑了相邻像素间的相关性和不同尺度检测结果的联系,从而使融合结果更细致和精确。一系列图像的实验结果证明本方法具有很好的实用性和鲁棒性。

英文摘要

In order to increase image registration accuracy in change detection, from the view of multi-scale fusion,a method was proposed for region variation detection,which applied the multi-scale analysis to remote sensing image.First of all, Wavelet transform was adopted to decompose original images, then Mahalanobis distance decision function was used to detect the changes of different scale images, and finally Markov random field was applied to fuse different scale change detection results. Since Markov random field fusion method took full account of the correlation between the adjacent pixels and the links of different scale change detection results, the fusion results were more accurate and practical. The testing results showed that this method is effective and robust.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065