期刊导航

论文摘要

基于先验信息的河流糙率广义反演方法

A River Roughness Calibration Model Based on Prior Information

作者:程伟平(浙江大学 建筑工程学院);陈一帆(浙江大学 建筑工程学院)

Author:Cheng Weiping(College of Civil Eng. and Architecture, Zhejiang Univ.);Chen Yifan(College of Civil Eng. and Architecture, Zhejiang Univ.)

收稿日期:2010-05-31          年卷(期)页码:2011,43(3):26-32

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:河流糙率;先验信息;反演模型

Key words:river roughness;prior information;inverse model

基金项目:国家自然科学基金资助项目(50379046;50879075);水体污染控制与治理国家科技重大专项基金资助项目(2008ZX07421)

中文摘要

在河流糙率反演过程中,由于水文观测信息比较稀缺,一般都是欠定或混定模型,容易由于观测噪声造成反演计算不稳定或反演结果偏离实践经验较大的问题。针对该问题,以糙率估计值作为正则化条件,构造了一个兼顾水文观测信息和糙率经验信息的反演模型,用来改善反演结果合理性、提高数值计算稳定性。应用河网数值仿真和实例分析了模型的数值稳定性、解的唯一性和结果可靠性等特征。结果表明:基于先验信息的河流糙率广义反演方法,能够有效地进行河流糙率的率定,较好地解决了信息量不足所引起的数值稳定性问题,且率定结果接近真实解。

英文摘要

Due to the lack of hydrological information, the river roughness calibration algorithm usually is unstable, and the calibrated roughness may deviate from the true value seriously. In order to treat this problem, a model, which utilized the prior information to regularize the under-determinate inverse problem, was proposed. The method could improve the stability and reliability of inverse solution. In this inverse model ,both the error minimization and the empirical information were took account of. A river network case was used to test the effectiveness of the model. Its numerical stability, uniqueness of solution and reliability of results were discussed. At last, this model was applied in the real case of creek Kootenai. The result of these cases showed that the present model can calibrate river roughness effectively with high numerical stability and reliable results.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065