期刊导航

论文摘要

恒模PARAFAC分解CRB及拟合算法

Cramer-Rao Bound and Fitting Algorithm for PARAFAC Decomposition Under Constant-Modulus Constraints

作者:刘旭(南京航空航天大学);许宗泽(南京航空航天大学)

Author:Liu XU(Nanjing University of Aeronautics and Astronautics);XU Zong-ze(Nanjing University of Aeronautics and Astronautics)

收稿日期:2008-04-29          年卷(期)页码:2009,41(5):221-226

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:盲信号处理;克拉美-罗界;平行因子;三线性分解;恒模

Key words:blind signal processing,;Cramer-Rao Bound;PARAFAC;trilinear decomposition;Constant Modulus

基金项目:省自然科学基金

中文摘要

为了对恒模约束条件下平行因子(PARAFAC)分解的参数估计性能进行分析,在给出PARAFAC模型分解的克拉美-罗界(CRB)的同时,结合约束CRB理论,推导出了“首行已知”约束和恒模约束下PARAFAC分解的CRB表达式,并给出了恒模约束PARAFAC分解的拟合算法TALS CM。仿真表明,恒模约束后的PARAFAC分解具有更低的CRB值,随着信噪比的增加,TALS CM拟合算法的性能接近于它的CRB值,说明算法是渐进有效的。TALS CM算法的性能优于普通的TALS算法,因此,在基于PARAFAC模型的信号处理算法中,合理利用信源的恒模特性可以有效地提高算法性能。

英文摘要

To analyze the parameter estimation performance of PARAFAC decomposition under Constant Modulus (CM) constraint, Cramer Rao Bound (CRB) expressions for PARAFAC decomposition under “First Row Known” and CM constraints were proposed. The fitting algorithm, named TALS CM, was also developed. Simulation results showed that, compared to the normal PARAFAC decomposition, CM constrained PARAFAC decomposition has a lower CRB. The performance of TALS CM algorithm was close to its CRB, which implied that TALS CM is asymptotically efficient.TALS CM algorithm has better performance than traditional TALS algorithm. Utilizing CM property of source signal improved the performance of the PARAFAC based signal processing algorithms.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065