期刊导航

论文摘要

粒子群优化算法中的不可见墙方法

The Invisible Wall in Particle Swarm Optimization

作者:胡建(四川大学计算机学院);李志蜀(四川大学计算机学院);罗震(四川大学计算机学院);罗谦(四川大学计算机学院);乔少杰(四川大学计算机学院)

Author:Hu Jian();();();();Qiao Shao-jie(College of Computer Science, Sichuan University)

收稿日期:2009-02-15          年卷(期)页码:2009,41(5):165-169

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:粒子群优化;进化算法;群体智能;不可见墙;边界约束

Key words:particle swarm optimization; evolutionary algorithms; swarm intelligence; invisible wall; boundary-constrained optimization

基金项目:国家科技部中小型科技企业创新基金(06C26225101730)

中文摘要

为了解决粒子群优化算法在处理边界约束问题时容易早熟的问题,从理论上证明了传统的不可见墙(Invisible Wall, IW)方法存在两种缺陷,即邻居中最优粒子与其他粒子具有不均等的进化机会,且大量的位置升级是多余的;并提出了一种改进的IW,即对各维分别进行离界判断,若其离界则立即再次升级。实验证明,改进的IW在收敛精度和运行时间上具有更好的性能,并对不同类型的边界表现了更强的鲁棒性和一致性。

英文摘要

The particle swarm optimization (PSO) is apt to cause premature convergence for boundary-constrained optimization problems. To solve this problem, two drawbacks in the invisible wall (IW) widely employed in PSO were discovered: the best particles in neighborhoods and the other particles have distinct opportunities to be evolved, and many updates of a particle’s position are unnecessary. An improved IW (IIW) was proposed. IIW detects whether or not a particle flies outside the allowable solution space in each dimension. If a dimension of the particle is out of the space, it will be updated immediately. Experiments were conducted in several boundary conditions and in different dimensionality, and the results showed that IIW performed more effectively than IW.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065