期刊导航

论文摘要

广义不完备混合决策系统的知识约简

Approach to Knowledge Reduction in Generalized Incomplete Hybrid Decision System

作者:赵佰亭(哈尔滨工业大学空间控制与惯性技术研究中心);陈希军(哈尔滨工业大学 空间控制与惯性技术研究中心,黑龙江 哈尔滨 150001);曾庆双(哈尔滨工业大学 空间控制与惯性技术研究中心,黑龙江 哈尔滨 150001)

Author:Zhao Bai-Ting();陈希军();曾庆双()

收稿日期:2009-02-11          年卷(期)页码:2009,41(6):177-182

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:广义不完备;混合决策系统;邻域;粗糙集;约简

Key words:generalized incomplete;hybrid decision system;neighborhood;rough set;reduction

基金项目:国防科技预研基金项目(9140A17030207HT0150),十一五总装备部预言基金资助项目(51309030102)

中文摘要

针对现实中同时具有丢失型和遗漏型未知属性的混合决策系统的约简问题,建立了广义不完备邻域粗糙集模型,提出了未知属性的辨别方法,给出了一种混合约简算法。模型采用广义邻域关系度量不可分辨关系,通过邻域信息粒子逼近论域空间,是非对称相似关系和容差关系的广义化。依据分类一致性假设及广义邻域关系进行未知属性的辨别,讨论了噪声样本和邻域大小对分类精度的影响。采用UCI数据库中5组数据进行了仿真试验,预测精度证明了约简算法的有效性和可行性。

英文摘要

In order to reduce the hybrid decision systems including the missing value attributes, which are lost or represent “do not care” conditions, a generalized incomplete rough set model based on neighborhood relations, the discrimination methods of the missing value and a hybrid reduction algorithm were proposed. The model approximates an arbitrary subset in the universe with neighborhood granules, and the generalized neighborhood relations are the generalization of the asymmetry similarity relations and the tolerance relations. The discrimination methods of the lost or “do not care” conditions were proposed based on the assumption of the consistency classification, and the influence of the noise samples and the neighborhood values to the classification accuracy was presented as well. The validity and feasibility of the algorithm were demonstrated by the results of experiments on five UCI machine learning databases.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065