期刊导航

论文摘要

基于分数阶微分的边缘检测

Edge Detection Based on Fractional Differential

作者:杨柱中(四川大学 电子信息学院, 四川 成都 610064);周激流(四川大学 计算机学院,四川 成都 610064);黄梅(四川大学 电子信息学院, 四川 成都 610064)

Author:(School of Electronics and Info. Eng., Sichuan Univ., Chengdu 610064,China);(School of Computer Sci. (Software),Sichuan Univ., Chengdu 610064,China);(School of Electronics and Info. Eng., Sichuan Univ., Chengdu 610064,China)

收稿日期:2007-04-24          年卷(期)页码:2008,40(1):152-157

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:分数阶微分;边缘检测;微分阶数;掩模模板;峰值信噪比(PSNR)

Key words:fractional differential;edge detection;differential order;cover module;peak signal noise ratio

基金项目:国家自然科学基金资助项目(60572033);教育部博士点基金资助项目(20020610013)

中文摘要

为了提高图像边缘提取的信噪比,更有效和准确检测图像边缘,由信号的微分特性得出分数阶微分算子较传统1阶和2阶微分算子具有更高的信噪比,然后根据经典的G-L分数阶微分定义推导出的分数阶差分方程,构建了近似的分数阶Tiansi模板。实验证明,基于分数阶微分的边缘提取算子,可以有效提取边缘和有比传统的算子更高的信噪比。

英文摘要

In order to improve signal noise ratio (SNR) of edge extraction, and to detect edge more effectively and exactly,according to fractional order differential difference function which was deduced from classical fractional differential G-L definition, an approximate fractional order differential Tiansi module was constructed. Experiments show that fractional differential operator can effectively extract edge information and has higher SNR than traditional operators.

上一条:可降解聚醚酯酰胺基聚氨酯共聚物的合成及性能表征

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065