期刊导航

论文摘要

一种基于免疫遗传的TSP求解方法

An Immune-genetic Based TSP Solution

作者:黄雪梅(四川大学 计算机学院,四川 成都610065);李涛(四川大学 计算机学院,四川 成都610065);徐春林(四川大学 计算机学院,四川 成都610065)

Author:(School of Computer,Sichuan Univ.,Chengdu 610065,China);(School of Computer,Sichuan Univ.,Chengdu 610065,China);(School of Computer,Sichuan Univ.,Chengdu 610065,China)

收稿日期:2005-05-12          年卷(期)页码:2006,38(1):86-91

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:免疫-遗传;能量函数;抗体浓度;TSP

Key words:immune-genetic;energy function;antibody concentration;TSP

基金项目:国家自然科学基金(60373110);教育部博士点基金 (20030610003) ;教育部新世纪优秀人才计划(NCET-04-0870)和四川大学科技创新基金资助项目(2004CF10)

中文摘要

为了更有效的求解旅行商问题(TSP),利用遗传算法与免疫算法各自的特点以及二者的共性提出了一种新的优化方法——免疫遗传算法,在本算法中采用抗体浓度调节机制并引入能量函数来求解TSP问题。给出了求解TSP问题的抗体、抗原、抗体浓度以及能量函数的数学表示,描述了该算法求解TSP的具体实现过程。仿真实验结果表明该方法在解决同类问题时比传统人工神经网络、遗传算法以及单一免疫算法取得了更短路径和更快的收敛。

英文摘要

Using the characteristics of the genetic algorithm and the immune algorithm, an immune-genetic algorithm was presented for solving TSP (traveling salesman problem) more effectively. The energy function and adjusting mechanism of antibody concentration were introduced into this algorithm .The mathematical formulas of antibody ,antigen ,antibody concentration and energy function for solving TSP were established. The procedure of solving TSP was described. The experimental results showed that this algorithm procure has the shorter route and faster convergence than the other algorithms for the same TSP, including traditional artifical neural network ,genetic algorithm and simplex immune algorithm.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065