期刊导航

论文摘要

基于模糊神经网络的方剂功效约简算法

Prescription Effect Reduction Algorithm Based on Fuzzy Neural Network

作者:乔少杰(四川大学 计算机学院,四川 成都 610065);唐常杰(成都中医药大学 基础医学院,四川 成都 610075);韩楠(北京大学 信息科学技术学院,北京 100871)

Author:(School of Computer Sci., Sichuan Univ., Chengdu 610065,China);(School of Chinese Basic Medicine, Chengdu Univ. of T. C. M,Chengdu 610075,China);(School of Electronics Eng. and Computer Sci.,Peking Univ.,Beijing 100871,China)

收稿日期:2006-12-28          年卷(期)页码:2008,40(2):107-111

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:功效约简;模糊神经元;径向基函数;模糊神经网络

Key words:effect reduction; fuzzy neuron; radial basis function; fuzzy neural network

基金项目:国家自然科学基金资助项目(60473071);国家中医药管理局基金SATCM资助项目(2003JP40);中国博士后科学基金资助项目(20060400002);四川省青年软件创新工程资助项目(2005AA0816)

中文摘要

了解决中药方剂的功效约简问题,将模糊神经元和径向基函数引入神经网络,提出了基于模糊神经网络的方剂功效约简算法PERA(Prescription Effect Reduction Algorithm),设计了方剂功效约简模糊神经网络EFNN(Effect Fuzzy Neural Network)。通过大量实验表明,与传统的基于神经网络和粗糙集的属性约简算法相比,PERA算法功效约简的准确率较高,一般在90%以上,功效约简的完整率优势明显,平均高出约40%,系统运行时间明显小于传统神经网络。

英文摘要

To solve the problem of reducing prescription effects of traditional Chinese medicine,the fuzzy neuron and the radial basis function was applied to the neural network, a prescription effect reduction algorithm named PERA (Prescription Effect Reduction Algorithm) based on fuzzy neural network was proposed, and a prescription effect reduction system named EFNN (Effect Fuzzy Neural Network) was developed. Experiments demonstrated that the proposed method is better than other traditional attribute reduction algorithms, such as artificial neural network and rough set. The precision of effect reduction of PERA is greater than 90%, the recall is about 40%, greater than traditional attribute reduction algorithms, and its running time is less than traditional neural networks obviously.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065