期刊导航

论文摘要

基于人工免疫和基因表达式编程的 多维复杂关联规则挖掘方法

Mining Multi-dimensional Complex Association Rule Based onArtificial Immune System and Gene Expression Programming

作者:曾涛(四川大学 计算机学院, 四川 成都 610065);唐常杰(四川大学 计算机学院, 四川 成都 610065);朱明放(四川大学 计算机学院, 四川 成都 610065)

Author:(School of Computer, Sichuan Univ., Chengdu 610065, China);(School of Computer, Sichuan Univ., Chengdu 610065, China);(School of Computer, Sichuan Univ., Chengdu 610065, China)

收稿日期:2006-01-17          年卷(期)页码:2006,38(5):136-142

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:数据挖掘; 多维复杂关联规则; 元规则; 基因表达式编程; 人工免疫

Key words:data mining; multi-dimensional complex association rule; meta rule; gene expression programming; artificial immune system

基金项目:国家自然科学基金资助项目(60473071;90409007)

中文摘要

为满足复杂数据挖掘应用对处理丰富语义的要求,引入了多维复杂关联规则概念,提出了通过人工免疫循环控制的基因表达式编程挖掘方法。构造了有特色的抗体和免疫细胞结构,能有效减少计算量;设计了特有的否定选择策略,可以消除无用的和冗余的免疫细胞;引出了逆否规则与原规则同为强规则的启发式过滤准则,可有效约简规则数目。实验表明,新方法能够高效、准确地挖掘多维复杂关联规则;在一定条件下,新方法的否定选择策略可将挖掘效率提高达1~3个数量级。

英文摘要

In order to handle rich semantics for complex data mining application, the formal concept of Multi-dimensional Complex Association Rule (MDCAR) was proposed. To mine it, a novel method based on Artificial Immune Gene Expression Programming (AIGEP) was introduced, where, new structures of antibody and immune cell were designed to decrease computing complexity, the special negative select strategy was presented to eliminate invalid or redundant immune cells according to system requirements, and a heuristic MDCAR reduction criterion was introduced, that is, a strong rule is fine only if the contra positive of it is strong. Experiments showed that the new method can mine MDCAR with good efficiency and high precision and improve the performance, in certain case, 10~1000 times higher than that without negative select strategy.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065