散乱点云自适应切片算法研究
Research Onself-adaptive Slicing Algorithm for Scattered Points
作者:孙殿柱(山东理工大学 机械工程学院,山东 淄博255091);朱昌志(山东理工大学 机械工程学院,山东 淄博255091);李延瑞(山东理工大学 机械工程学院,山东 淄博255091);田中朝(山东理工大学 机械工程学院,山东 淄博255091)
Author:Sun Dianzhu(School of Mechanical Eng.,Shandong Univ. of Technol., Zibo 255091, China);Zhu Changzhi(School of Mechanical Eng.,Shandong Univ. of Technol., Zibo 255091, China);Li Yanrui(School of Mechanical Eng.,Shandong Univ. of Technol., Zibo 255091, China);Tian Zhongchao(School of Mechanical Eng.,Shandong Univ. of Technol., Zibo 255091, China)
收稿日期:2008-09-02 年卷(期)页码:2010,42(1):216-219
期刊名称:工程科学与技术
Journal Name:Advanced Engineering Sciences
关键字:逆向工程;散乱点云;动态空间索引结构;最小生成树;自适应切片
Key words:reverse engineering; scattered points; spacial index structure; minimum spannirng;tree; self-adaptive slicing
基金项目:国家高技术研究发展863计划资助项目(2006AA04Z105)
中文摘要
提出一种散乱点云自适应切片算法,该算法建立点云动态空间索引结构,基于该结构快速准确获取切片邻域数据并确定各层切片位置,依据邻域数据与切片的位置关系将其分为正负两个区域,通过正负区域配对点连线与切片求交获取切片数据点,并采用最小生成树算法排序,得到有序的切片数据点,实现散乱点云的自适应切片,实例证明该算法适用于逆向工程中各种复杂型面点云数据,切片数据获取精度高,算法运行速度快。
英文摘要
An self-adaptive slicing algorithm for scattered points is proposed, which has four steps: first, the slicing neighbor points are obtained based on the spacial index structure of scattered points; second, the slicing neighbor points are divided into two parts; third, the slicing points are obtained by the intersecting between matching points of slicing neighbor data and the slice; fourth, the intersecting points are sorted with algorithm of Minimum Spannirng Tree.This algerithm can obtain slicing points accurately, effectively and has strongly adaptability of data type.
上一条:基于潮流追踪的两部制输电定价法
【关闭】